live 发表于 2003-6-4 21:28

三角函数-还记得吗?

Secant(正割) Sec(X) = 1 / Cos(X)
    Cosecant(余割) Cosec(X) = 1 / Sin(X)
    Cotangent(余切) Cotan(X) = 1 / Tan(X)
    Inverse Sine(反正弦) Arcsin(X) = Atn(X / Sqr(-X * X + 1))
    Inverse Secant(反正割) Arcsec(X) = Atn(X / Sqr(X * X - 1)) + Sgn((X) - 1) * (2 * Atn(1))
    Inverse Cosecant(反余割) Arccosec(X) = Atn(X / Sqr(X * X - 1)) + (Sgn(X) - 1) * (2 * Atn(1))
    Inverse Cotangent(反余切) Arccotan(X) = Atn(X) + 2 * Atn(1)
    Hyperbolic Sine(双曲正弦) HSin(X) = (Exp(X) - Exp(-X)) / 2
    Hyperbolic Cosine(双曲余弦) HCos(X) = (Exp(X) + Exp(-X)) / 2
    Hyperbolic Tangent(双曲正切) HTan(X) = (Exp(X) - Exp(-X)) / (Exp(X) + Exp(-X))
    Hyperbolic Secant(双曲正割) HSec(X) = 2 / (Exp(X) + Exp(-X))
    Hyperbolic Cosecant(双曲余割) HCosec(X) = 2 / (Exp(X) - Exp(-X))
    Hyperbolic Cotangent(双曲余切) HCotan(X) = (Exp(X) + Exp(-X)) / (Exp(X) - Exp(-X))
    Inverse Hyperbolic Sine(反双曲正弦) HArcsin(X) = Log(X + Sqr(X * X + 1))
    Inverse Hyperbolic Cosine(反双曲余弦) HArccos(X) = Log(X + Sqr(X * X - 1))
    Inverse Hyperbolic Tangent(反双曲正切) HArctan(X) = Log((1 + X) / (1 - X)) / 2
    Inverse Hyperbolic Secant(反双曲正割) HArcsec(X) = Log((Sqr(-X * X + 1) + 1) / X)
    Inverse Hyperbolic Cosecant HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) + 1) / X)
    Inverse Hyperbolic Cotangent(反双曲余切) HArccotan(X) = Log((X + 1) / (X - 1)) / 2
    以 N 为底的对数 LogN(X) = Log(X) / Log(N)

Mephis 发表于 2003-6-8 03:04

:confused:

kleine 发表于 2003-11-6 19:23

啊?怎么这么多跳舞的香蕉~~~~:confused:

mashimarobaby 发表于 2003-11-20 14:05

。。。。。。。
页: [1]
查看完整版本: 三角函数-还记得吗?