作者:微信文章
推荐一个大模型周边项目
一、项目简介
Crawl4AI 是一款专为大语言模型(LLM)和 AI 应用设计的开源网页爬虫与数据抓取工具。它不仅能高效采集网页数据,还能直接输出结构化、干净的 Markdown 内容,非常适合用于 RAG(检索增强生成)、AI 微调、知识库建设等场景。
二、核心亮点
为 LLM 优化:输出智能、精炼的 Markdown,极大方便 AI 下游处理。极速高效:实时爬取,速度提升 6 倍,性能与成本兼顾。灵活浏览器控制:支持会话管理、代理、定制化 hook,轻松应对反爬与复杂页面。启发式智能抽取:集成先进算法,减少对大模型的依赖,提升信息提取效率。开源易部署:无需 API Key,支持 Docker 与云端部署。
三、安装与快速上手
pip install crawl4ai
crawl4ai-setup # 一键配置浏览器环境
如遇浏览器相关问题,可手动安装 Playwright:
python -m playwright install --with-deps chromium
import asyncio
from crawl4ai import *
async def main():
async with AsyncWebCrawler() as crawler:
result = await crawler.arun(
url="[https://www.nbcnews.com/business",](https://www.nbcnews.com/business",)
)
print(result.markdown)
if __name__ == "__main__":
asyncio.run(main())
# 基础爬取并输出 Markdown
crwl [https://www.nbcnews.com/business](https://www.nbcnews.com/business) -o markdown
# 深度爬取,BFS 策略,最多 10 页
crwl [https://docs.crawl4ai.com](https://docs.crawl4ai.com) --deep-crawl bfs --max-pages 10
# 调用 LLM 按问题抽取
crwl [https://www.example.com/products](https://www.example.com/products) -q "提取所有商品价格"
四、典型应用场景
构建 AI 知识库、FAQ、企业内网检索 自动化采集新闻、论坛、商品信息 支持自定义抽取策略,适配各类结构化/半结构化数据 结合 LLM 做智能问答、信息抽取
五、进阶用法示例
自定义内容过滤与 Markdown 生成
from crawl4ai import AsyncWebCrawler, BrowserConfig, CrawlerRunConfig, CacheMode
from crawl4ai.content_filter_strategy import PruningContentFilter
from crawl4ai.markdown_generation_strategy import DefaultMarkdownGenerator
asyncdef main():
browser_config = BrowserConfig(headless=True, verbose=True)
run_config = CrawlerRunConfig(
cache_mode=CacheMode.ENABLED,
markdown_generator=DefaultMarkdownGenerator(
content_filter=PruningContentFilter(threshold=0.48, threshold_type="fixed", min_word_threshold=0)
)
)
asyncwith AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(
url="[https://docs.micronaut.io/4.7.6/guide/",](https://docs.micronaut.io/4.7.6/guide/",)
config=run_config
)
print(result.markdown.raw_markdown)
自定义 Schema 结构化抽取
from crawl4ai import AsyncWebCrawler, BrowserConfig, CrawlerRunConfig, CacheMode
from crawl4ai.extraction_strategy import JsonCssExtractionStrategy
import json
asyncdef main():
schema = {
"name": "课程信息",
"baseSelector": "section.charge-methodology .w-tab-content > div",
"fields": [
{"name": "section_title", "selector": "h3.heading-50", "type": "text"},
{"name": "course_name", "selector": ".text-block-93", "type": "text"},
{"name": "course_icon", "selector": ".image-92", "type": "attribute", "attribute": "src"}
]
}
extraction_strategy = JsonCssExtractionStrategy(schema, verbose=True)
browser_config = BrowserConfig(headless=False, verbose=True)
run_config = CrawlerRunConfig(extraction_strategy=extraction_strategy, cache_mode=CacheMode.BYPASS)
asyncwith AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(
url="[https://www.kidocode.com/degrees/technology",](https://www.kidocode.com/degrees/technology",)
config=run_config
)
companies = json.loads(result.extracted_content)
print(json.dumps(companies, indent=2))
END
未闻 Code·知识星球开放啦!
一对一答疑爬虫相关问题
职业生涯咨询
面试经验分享
每周直播分享
......
未闻 Code·知识星球期待与你相见~
|